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By S T É P H A N E L E B L A N C AND C L A U D E C A M B O N
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A detailed investigation of the effects of the Coriolis force on the three-dimensional
linear instabilities of Stuart vortices is proposed. This exact inviscid solution describes
an array of co-rotating vortices embedded in a shear flow. When the axis of rotation
is perpendicular to the plane of the basic flow, the stability analysis consists of
an eigenvalue problem for non-parallel versions of the coupled Orr–Sommerfeld and
Squire equations, which is solved numerically by a spectral method. The Coriolis force
acts on instabilities as a ‘tuner’, when compared to the non-rotating case. A weak
anticyclonic rotation is destabilizing: three-dimensional Floquet modes are promoted,
and at large spanwise wavenumber their behaviour is predicted by a ‘pressureless’
analysis. This latter analysis, which has been extensively discussed for simple flows in
a recent paper (Leblanc & Cambon 1997) is shown to be relevant to the present study.
The basic mechanism of short-wave breakdown is a competition between instabilities
generated by the elliptical cores of the vortices and by the hyperbolic stagnation
points in the braids, in accordance with predictions from the ‘geometrical optics’
stability theory. On the other hand, cyclonic or stronger anticyclonic rotation kills
three-dimensional instabilities by a cut-off in the spanwise wavenumber. Under rapid
rotation, the Stuart vortices are stabilized, whereas inertial waves propagate.

1. Introduction
The present study deals with linear inviscid instabilities of plane flows in an

incompressible homogeneous rotating fluid. The angular velocity vector Ω = Ωez
of the rotating frame is considered perpendicular to the plane of the basic flows.
Because of the wide variety of physical phenomena triggered by the Coriolis force
(some basic mechanisms are briefly described by Batchelor 1967, pp. 555–567; and
extensive analyses may be found in Greenspan 1969), the present study may be
introduced by three different questions, which in fact are linked.

The first one deals with the three-dimensional nature of the instabilities, since
two-dimensional motions in the plane of the basic flow are unaffected by the Coriolis
force. In an inertial frame, three-dimensional instabilities were widely studied in the
early 1980s with the ‘Orszag/Herbert’ transition mechanism in shear flows (see the
reviews in Bayly, Orszag & Herbert 1988; Herbert 1988). It may be summarized
as follows: “the initial parallel flow is the wrong state to linearize about if we wish
to understand the origin of complex three-dimensional structure; the correct state is a
nonlinear equilibrium or quasi-equilibrium arising from the primary instability” (Bayly
et al. 1988). In these works, it was found that two-dimensional basic states or finite-
amplitude travelling waves may exhibit three-dimensional linear secondary instabilities
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with common generic features, namely short-wavelength fast growing modes resulting
from an inertial mechanism: the ellipticity of the streamlines in vortical regions of
the non-parallel basic flow is taken to be responsible, and the broadband ‘elliptical
instability’ (Pierrehumbert 1986; Bayly 1986; Landman & Saffman 1987; Waleffe 1989,
1990; Leweke & Williamson 1998; Sipp & Jacquin 1997; and others) is often seen to be
a generic model of these instabilities. It seems today that Orszag/Herbert’s transition
could be ‘bypassed’ by other mechanisms (see reviews by Henningson 1995; Waleffe
1995). However, the first question is: what are the effects of the Coriolis force on the
secondary instabilities of non-parallel shear flows, and does the elliptical instability
also play a crucial role in a rotating fluid (Craik 1989; Gledzer & Ponomarev 1992;
Smyth & Peltier 1994; Cambon et al. 1994)? And what about the role of hyperbolic
stagnation points brought to light using exactly the same formalism in the context of
rapid distortion theory (RDT) of homogeneous turbulence (Batchelor & Proudman
1954; Cambon 1982; Cambon, Teissèdre & Jeandel 1985; Cambon et al. 1994; and
others), and more recently in the context of hydrodynamic stability theory (Lagnado,
Phan-Thien & Leal 1984; Craik & Criminale 1986; Friedlander & Vishik 1991;
Lifschitz & Hameiri 1991)? Do they have a link with the braid longitudinal vortices
in plane shear flows and bluff-body wakes (Ho & Huerre 1984; Klaassen & Peltier
1985, 1989, 1991; Metcalfe et al. 1987; Lasheras & Choi 1988; Williamson 1996)?

The second issue is linked to the presence of quasi-two-dimensional coherent
vortices aligned with the rotation axis. Experimental evidence of such structures
is extensive (see the review by Hopfinger & van Heijst 1993). In a rotating tank,
diffusive turbulence produced by an oscillating grid leads, above a certain distance
from the grid, to the formation of ‘long-lived’ coherent vortices, which do not
emerge in the non-rotating case (Hopfinger, Browand & Gagne 1982; Lollini 1997).
Other laboratory experiments have shown the existence of two-dimensional vortices
with various complex topologies such as monopolar, dipolar, tripolar and triangular
vortices, sometimes observed in direct numerical simulations of two-dimensional
turbulence (Kloosterziel 1990; Kloosterziel & van Heijst 1991; van Heijst, Kloosterziel
& Williams 1991; Carnevale & Kloosterziel 1994). Emergence of columnar vortices is
outside the scope of the present paper because it involves complex mechanisms that
cannot be explained by the Taylor–Proudman theorem, which only concerns a linear
and steady regime. Thus, in rotating homogeneous turbulence, Cambon, Mansour &
Godeferd (1997) have shown that the linear regime which consists of inertial waves
cannot explain the transition from three-dimensional to two-dimensional turbulence,
which is ultimately triggered by nonlinear interactions (for the crucial role of resonant
inertial waves, see also Waleffe 1993; Babin, Mahalov & Nicolaenko 1996). However,
the long persistence of these structures suggest that they are insensitive (or stable)
to perturbations with rapid growth rate. Are linear mechanisms able to explain
the “presence of intense cyclonic vortices and (much) weaker anticyclonic vortices” as
observed by Hopfinger et al. (1982) and others in rotating fluids (Kloosterziel 1990;
Bidokhti & Tritton 1992; Smyth & Peltier 1994)?

The third and last question, which in fact links the two previous ones, deals with
the generic character of instability mechanisms triggered by the Coriolis force. For
parallel shear flows (Pedley 1969; Tritton & Davies 1981), circular vortices (or curved
shear flows) (Kloosterziel 1990; Kloosterziel & van Heijst 1991; Mutabazi, Normand
& Wesfreid 1992), or quadratic flows (Cambon 1982; Cambon et al. 1985, 1994; Craik
1989), there exist exact stability criteria, or more precisely sufficient conditions for
instability. Leblanc & Cambon (1997, referred hereafter as LC97), have shown that
they may be expressed solely by the second invariant of the ‘inertial tensor’. This
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‘general discriminant’ appears as a catalyst of short-wavelength instabilities, which
are described at first order by the ‘pressureless’ dynamics, as already pointed out by
Bayly (1988) for the classical centrifugal instability. Moreover, for complex vortical
flows, using the ‘geometrical optics’ stability theory developed and applied recently
to fluid mechanics by Lifschitz and coworkers (Lifschitz & Hameiri 1991; Lifschitz
1991, 1994; Bayly, Holm & Lifschitz 1996; Lebovitz & Lifschitz 1996), the role of
stagnation points in rotating flows has been clarified (Leblanc 1997). Is there a link
between this new approach and the classical spectral stability theory?

The present study is a step towards answering the above points, which are discussed
in the context of the linear stability of the Stuart vortices, which may be seen
as a model of a mixing-layer with rolled-up Kelvin’s ‘cat’s eyes’, or as co-rotating
vortices embedded in a background shear flow. Stuart’s inviscid exact solution exhibits
stagnation points with streamlines locally elliptical (in the cores) or hyperbolic (in the
braids). In a non-rotating frame, the two- and three-dimensional stability of Stuart’s
vortices has been explored by Pierrehumbert & Widnall (1982) and Klaassen &
Peltier (1989, 1991). In a rotating frame, Smyth & Peltier (1994, referred hereafter as
SP94), examined the influence of the Coriolis force on the three-dimensional viscous
instabilities of two-dimensional Kelvin–Helmholtz vortices, obtained by numerical
simulations. They found that the influence of viscosity is weak, leading only to a
cut-off for short-wavelength instability. Three kinds of modes have been brought to
light in their work: the ‘core’, ‘braid’, and ‘edge’ modes. Their links with the present
study will be discussed.

After a short review of the basic inviscid instability mechanisms in rotating fluids
(§2), the rest of the paper is organized as follows: a description of the Stuart vortices
is recalled in §3 and the governing equations are formulated in §4. The linear problem
consists of non-parallel versions of the Orr–Sommerfeld and Squire equations, and
a Floquet analysis (with respect to the streamwise space coordinate) is performed
(§5). The resulting eigenvalue problem is solved by a spectral-collocation method,
described in §6. Looking at the physics, the main tendencies of the Coriolis force
are described in §7. In particular, the role of the hyperbolic and elliptical stagnation
points is brought to light in §8, the core of the paper, and the spectral calculations
are compared with the predictions of the geometrical optics stability theory. Finally,
the effects of rapid rotation and propagation of inertial waves are discussed in §9.

2. Basic inviscid mechanisms
2.1. Classical criteria

In order to explain the effect of the Coriolis force on circular vortices, Kloosterziel
(1990) extended the classical Rayleigh criterion for centrifugal instability to rotating
fluids (see also Kloosterziel & van Heijst 1991; Mutabazi et al. 1992). This ‘generalized’
Rayleigh criterion states that instability occurs when

2(Ω + V/r)(W + 2Ω) < 0 somewhere,

where U (r, θ) = V (r)eθ denotes the basic velocity field in a plane polar coordinate
frame, and W (r) = r−1d(rV )/dr is the basic relative vorticity. As noted by LC97, this
criterion states simply that the flow is unstable if the square of the absolute circulation
decreases somewhere. In accordance with this criterion, the stabilizing and destabiliz-
ing effects of the Coriolis force on a circular monopolar vortex is clearly illustrated
by Carnevale et al. (1997) with the Lamb vortex (Lamb 1932; Hopfinger & van Heijst
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1993) characterized by a single-signed vorticity distributionW (r) = −W0 exp(−r2/2δ2)
with W0 and δ positive without lost of generality. Following the generalized Rayleigh
criterion, instability occurs when 0 < 2Ω < W0. Thus, a weak anticyclonic rotation is
destabilizing , whereas other rotation rates are stabilizing (either cyclonic or stronger
anticyclonic). This tendency was also observed for an isolated monopolar vortex (with
zero net circulation) which is surrounded by a crown of vorticity of opposite sign,
except that the unstable bandwidths may include the non-rotating case and weakly
cyclonic rotations (Kloosterziel 1990; Hopfinger & van Heijst 1993). Identical mech-
anisms are observed in curved shear layers, and a review of the influence of rotation
on Görtler instability may be found in Bottaro, Klingmann & Zebib (1996). This
criterion has also been invoked by SP94 to explain the appearance of an ‘edge’ mode
which destabilizes the row of Kelvin–Helmholtz rolls, for weak anticyclonic rotations.

This preliminary discussion gives a first indication of how to answer the second
question which may be reformulated as: why don’t strong anticyclonic vortices ever
emerge? The answer could be: because they are linearly unstable. Indeed, for example,
in a rotating fluid at given angular velocity (say Ω positive), a Lamb vortex with
W0 > 2Ω will be linearly unstable, whereas one with W0 6 2Ω is possibly linearly
stable. Obviously, the first case corresponds to a strong anticyclone (negative vortic-
ity, positive rotation rate and |W0| > |2Ω|). The second case corresponds to weak
anticyclones and cyclones (weak or strong). Of course, this is not new (Kloosterziel
1990; Kloosterziel & van Heijst 1991; SP94; Carnevale et al. 1997), but it illustrates
the equivalence of the following statements: strong anticyclones are unstable and a
weak anticyclonic rotation is destabilizing .

Exactly the same tendencies are observed for shear flows with parallel streamlines,
e.g. U (x, y) = U(y)ex, for which the classical ‘Pedley’ (or ‘Bradshaw–Richardson–
Tritton’) criterion is applied. Derived rigorously by Pedley (1969), it states that
instability occurs when

2Ω(W + 2Ω) < 0 somewhere,

(with W (y) = −dU/dy the basic vorticity) showing clearly that a single-signed vortic-
ity shear flow such as the hyperbolic-tangent mixing layer with vorticity distribution
W (y) = −W0 cosh−2(y/δ) (W0 and δ positive) is unstable when 0 < 2Ω < W0 (Yanase
et al. 1993). This is illustrated on figure 1. This criterion exhibits a strong similarity
with the generalized Rayleigh criterion, except for the curvature term V/r.

Another inviscid exact instability criterion has been derived for the class of plane
quadratic flows subjected to the Coriolis force (Craik 1989; Cambon et al. 1994).
This class of solutions includes the unbounded elliptical vortex, the hyperbolic flow
and the unbounded Couette-like (or pure-shear) flow. They are characterized by two
parameters: the vorticity W and the strain rate D which are both uniform in the flow
domain (with W and D positive). And instability occurs if

− 1
2
W − D < 2Ω < − 1

2
W + D.

This is of course a sufficient condition for instability, since the well-known ‘elliptical
instability’ occurs without rotation (Pierrehumbert 1986; Bayly 1986; Waleffe 1989,
1990), but is killed for ‘zero absolute vorticity’ W + 2Ω = 0 (Craik 1989; Cambon et
al. 1994; Bayly et al. 1996; Lebovitz & Lifschitz 1996).

2.2. Pressureless modes and stagnation points

These three stability criteria are characterized by the sign of the second invariant of
the ‘inertial tensor’ and may be expressed jointly as (LC97): a sufficient condition for
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Figure 1. Growth rate of eigenmodes with α = 0 for the mixing layer U(y) = tanh(y).

instability is that

− 1
2
S: S + 1

4
W t ·W t < 0 somewhere in the flow domain,

where W t and S are respectively the ‘tilting vorticity’ (Cambon et al. 1994) and
the rate-of-strain tensor of the basic flow, expressed in Cartesian coordinates (x, y, z)
(in curvilinear coordinates, a curvature term appears in the criterion). In agreement
with Bayly (1988) for the centrifugal instability, LC97 showed that when instability
occurs in accordance with this criterion, a class of three-dimensional ‘pressureless’
modes is excited. These modes are characterized by a wave vector perpendicular to
the plane of the basic flow (or equivalently aligned with the rotation axis k = kez).
When the physical problem exhibits a characteristic lengthscale L, they consist of
short-wavelength (k � L−1) eigenmodes strongly localized on streamlines. Otherwise,
for quadratic flows (and no other examples are known), these pressureless modes are
spatially uniform and not localized in the (x, y)-plane.

Figure 1 is an illustration of the tendencies described above. It corresponds to
spectral stability calculations of the dimensionless mixing layer U(y) = tanh(y) (the
numerical method is described later). The map represents the growth rate s = Re(σ) of
the most unstable eigenmode v′(x, t) = eσteiαxeikzv(y) for a pure spanwise wave vector
(α = 0 and k 6= 0), as a function of the dimensionless rotation rate Ω. Illustrating
the Pedley criterion (instability with α = 0 occurs only if 0 < 2Ω < 1), it shows also
that for increasing k (and fixed Ω), the growth rate s = Re(σ) of the eigenmodes
asymptotes to a constant value, which in fact is predicted by the pressureless dynamics
(LC97).

Recently, the Lifschitz & Hameiri (1991) theory for short-wave instability has been
used to show that any steady inviscid plane flow subjected (or not) to a Coriolis force
is three-dimensionally unstable if

Φ(x0) = − 1
2
S: S + 1

4
W t ·W t < 0

on a stagnation point located at x0 (Leblanc 1997). Φ is the discriminant introduced
in LC97. In fact, this powerful theory allows one to apply all the results obtained for
the unrealistic quadratic flows reviewed above to the local topology of any complex
basic flow. Thus, for example, the short-wave stability characteristics of an elliptical
vortex core are analogous of the unbounded ‘elliptical instability’. Bayly et al. (1996)
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and Lebovitz & Lifschitz (1996) took advantage of this to study various complex
flows. In particular, it could be shown (Cambon et al. 1994; Leblanc 1997) that at
zero absolute vorticity

W (x0) + 2Ω = 0,

any vortex core (locally circular or elliptical) and any pure-shear stagnation point
(with locally parallel streamlines) is exponentially stable (the pure-shear case leads to
an algebraic growth, damped by viscosity).

In view of all the results of this section, stabilization of vortices at zero absolute
vorticity appears to be a generic feature of rotating flows. This is in contradiction
with the heuristic criterion proposed by Lesieur, Yanase & Métais (1991), which
predicts “a catastrophic three-dimensional destabilization” at zero-absolute vorticity
(see discussions in Cambon et al. 1994). On the other hand, at zero tilting vorticity

W (x0) + 4Ω = 0,

any stagnation point (except circular) is unstable.

3. Stuart’s array of vortices
3.1. Description

It is well-known that a two-dimensional steady solution of the Euler equation de-
scribed by the streamfunction Ψ satisfies

J(Ψ,∇2Ψ ) = 0,

with J the Jacobian operator, and then vorticity is constant along streamlines. This
relation is satisfied if there exists an arbitrary function F such that W = −∇2Ψ =
F(Ψ ).

Discovered by Stuart (1967), the dimensionless streamfunction

Ψ (x, y) = log(cosh y − ρ cos x), 0 6 ρ 6 1 (3.1)

is a solution of the Liouville equation ∇2Ψ = (1− ρ2) exp(−2Ψ ). This exact solution
describes a shear layer centred on the x-axis between two uniform streams. Indeed
U ∼ ±1 and V ∼ 0 when y → ±∞. If ρ = 0, the hyperbolic-tangent mixing layer with
parallel streamlines is recovered, whereas for ρ = 1, (3.1) describes a single row of
co-rotating point vortices, with circulation −4π, periodically spaced along the x-axis
(Lamb 1932). In the intermediate range (0 < ρ < 1), the shear layer exhibits two-
dimensional co-rotating eddies with a smooth vorticity distribution, that resembles
the Kelvin’s ‘cat’s eyes’ of critical layers (Drazin & Reid 1981). They are periodically
spaced along the x-axis with period lx = 2π, and as shown by Stuart (1967), their
circulation is also −4π. For values of the shape parameter ρ between 0.2 and 0.6,
the Stuart streamfunction resembles a two-dimensional mixing layer with rolled-up
Kelvin–Helmholtz vortices, originated from primary instability of the tanh(y) parallel
profile (Ho & Huerre 1984), even if, as mentioned by Stuart (1967), the streamwise
wavenumber of the most unstable linear mode given by the temporal stability analysis
of Michalke (1964) is α = 0.4446, whereas α = 1 (the wavenumber of the Stuart
vortices) yields neutral modes. Another objection is that Stuart’s streamfunction does
not exhibit the viscous braids linking adjacent Kelvin–Helmholtz rolls, which break
the (x, y) → (−x,−y) symmetry of (3.1). However, Stuart’s solution is a convenient
model for analytical studies.
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Figure 2. Vorticity and streamlines of Stuart’s exact solution. (a) ρ = 1/10; (b) ρ = 1/3.

Its vorticity

W (x, y) = (ρ2 − 1)/(cosh y − ρ cos x)2

is everywhere negative. Far from the shear layer, the flow is irrotational. The vorticity
in the cores located at x = 2pπ (p integer) is (ρ + 1)/(ρ − 1); it increases with ρ
in order to conserve the net circulation −4π. Most of the stability calculations have
been performed with ρ = 1/10 and ρ = 1/3 for which the vorticity distribution is
represented on figure 2. The streamlines of one period of the Stuart vortices on figure
2(b) are close to the trajectories measured in Jupiter’s ‘Great Red Spot’, which is an
isolated vortex in a shear flow (see figure 2 in Marcus 1993 or figure 1 in Dowling
1995). It is clear that this comparison is only qualitative because Jupiter’s ‘Great Red
Spot’ has a depth which is much smaller than its lateral extent. However, since the
Coriolis force promotes short-wavelength instabilities, it is reasonable to suppose that
they may be excited (or killed) in thin layers.

3.2. Stagnation points

In the vicinity of the vortex cores (x = 2pπ, p integer), the Stuart streamfunction
reads

ΨE ∼ 1
2
(y2 + ρx2)/(1− ρ)

showing clearly that the streamlines are locally elliptical when 0 < ρ < 1, whereas in
the vicinity of the stagnation points located in the braids (x = (2p + 1)π, p integer),
(3.1) behaves as

ΨH ∼ 1
2
(y2 − ρx2)/(1 + ρ)

exhibiting hyperbolic streamlines. On these stagnation points, the plane velocity
gradient reads

∇UE,H =

(
0 −γ − ε

γ − ε 0

)
, (3.2)

with

ε = − 1
2

and γ =

{
1
2
(ρ+ 1)/(ρ− 1) for elliptical cores (|γ| > |ε|),

1
2
(ρ− 1)/(ρ+ 1) for hyperbolic regions (|γ| < |ε|).

(3.3)

4. Governing equations
4.1. Equations of motion

In a frame rotating at a constant angular velocity Ω, the relative motion of an
incompressible inviscid fluid is governed by Euler and continuity equations, that read
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in non-dimensional form, and without any non-conservative body forces other than
the Coriolis force

∂tu+ u · ∇u+ 2Ω× u = −∇π, ∇ · u = 0. (4.1)

The relative velocity u(x, t) has been non-dimensionalized by a characteristic velocity
scale U, the position vector x by a characteristic lengthscale L, and time t by L/U.
The coordinate frame rotates at the non-dimensional angular velocity Ω, which has
also been non-dimensionalized by L/U, such that |Ω| may be seen as the inverse of a
global Rossby number; π(x, t) is the non-dimensional modified pressure field including
the contributions of the centrifugal force and other conservative body forces applied
to the fluid.

If the relative motion of the flow is purely two-dimensional in the plane perpen-
dicular to the axis of rotation, say ez , then the Coriolis force is conservative since
2Ω × u = ∇(2Ωψ), where ψ(x, y, t) is the two-dimensional streamfunction. Thus, for
an observer moving with the rotating frame, the flow motion is not affected by
the Coriolis force. This property is very important because it allows one to choose
any two-dimensional flow motion in the (x, y)-plane as basic states for the stability
analysis in the rotating frame. Another consequence is that the Coriolis force acts
only on three-dimensional perturbations, whereas two-dimensional perturbations are
unaffected.

4.2. Linear problem

In a Cartesian coordinate frame (ex, ey, ez) rotating with angular velocity vector
Ω = Ωez , let U (x, y) = (U(x, y), V (x, y), 0) and Π(x, y) describe the relative motion of
a two-dimensional steady flow. Adding a three-dimensional perturbation u′(x, t) and
π′(x, t), substituting into (4.1) and neglecting quadratic terms, the linearized equations
read, following LC97,

Dtu
′ + S u′ + 1

2
W t × u′ = −∇π′, ∇ · u′ = 0, (4.2)

where Dt = ∂t + U · ∇ is the material derivative following the basic flow, S =
1
2
(∇U + ∇UT ) is the basic rate-of-strain tensor of the basic flow, and W t = W + 4Ω

is the ‘tilting vorticity’ of the basic flow (Cambon et al. 1994).
No coefficient of the linear problem involves a z-dependence; it is thus possible

to Fourier transform in the ez-direction, or equivalently to seek perturbations of the
following form:

[u′, π′](x, t) = eikz[u, π](x, y, t),

where the spanwise wavenumber k is real to ensure homogeneity of the solution when
z → ±∞. Without specifying the basic flow and boundary conditions, nothing can be
said about [u, π](x, y, t). Equation (4.2) reads

Dtv + M v = −∇π, Dtw = −ikπ, ∇ · v + ikw = 0; (4.3)

v(x, y, t) is the projection of u(x, y, t) on the (x, y)-plane, whereas w(x, y, t) is its
spanwise component. ∇( ) and ∇ · ( ) are now the gradient and divergence operator in
the (x, y)-plane. The 2× 2 ‘inertial tensor’ M is defined by

M = N + C with C =

(
0 −2Ω

2Ω 0

)
, (4.4)

where N = ∇U , C is the ‘Coriolis tensor’, and in a curvilinear plane coordinate
frame, M involves an additional antisymmetric ‘curvature tensor’ (LC97). The two
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eigenvalues of M are solutions of the characteristic equation

λ2 + Φ = 0 where Φ = − 1
2
M: M = − 1

2
trM 2

is the second invariant of the inertial tensor M . In Cartesian coordinates, this ‘general
discriminant’ reads (LC97)

Φ(x, y) = − 1
2
S: S + 1

4
W t ·W t

= (Ψxx − 2Ω)(Ψyy − 2Ω)− (Ψxy)
2, (4.5)

where Ψ (x, y) is the basic streamfunction and the subscripts denote partial differen-
tiation.

Considering the structure of the linear problem (4.3) and the expression for the
inertial tensor (4.4), the Coriolis force acts on instabilities as a tuner of their non-
rotating counterparts. This idea is clearly illustrated for quadratic flows and the
‘elliptical instability’ (Craik 1989; Cambon et al. 1994). Indeed, the stabilizing or
destabilizing influence of rotation is described by the shift of the angular band of
unstable oblique (and time-dependent) wave vectors (see figure 4 in Cambon et al.
1994).

4.3. Non-parallel Orr–Sommerfeld and Squire equations

Without solid-body rotation, three-dimensional stability analyses of basic flows with
non-parallel streamlines require solving the linear system composed of non-parallel
versions of the Orr–Sommerfeld and Squire equations (Orszag & Patera 1981, 1983;
Herbert, Bertolotti & Santos 1987). The Coriolis force may be added without major
difficulty.

In the following, the partial spatial derivatives of the streamfunction and vorticity
of the basic flow are denoted with a subscript. Thus the basic vorticity reads W =
−(Ψxx+Ψyy). The partial derivative operators applied to the velocity perturbation are
denoted for example by ∂xy = ∂2/∂x∂y. The material derivative following the basic
flow now reads Dt = ∂t + Ψy∂x −Ψx∂y . The non-parallel Orr–Sommerfeld equation
is obtained by applying the Laplacian operator to the second component of the
linearized Euler equation. Pressure is easily eliminated using the linearization of the
Poisson equation. After some manipulations and tedious algebra, one obtains

(Dt −Ψxy)(∂xx + ∂yy − k2)v

= (−2Wx∂x + 2Ψxy∂xy −Wxx + (Ψxx − 2Ω)(∂xx − k2)−Ψxx∂yy)u

+(−Wx∂y −Wy∂x −Wxy − 2Ψxy∂xx + 2(Ψxx − Ω)∂xy)v, (4.6)

where u and v are the components of the velocity perturbation in the plane of the
basic flow. The non-parallel Squire equation is the second component of the linearized
Helmholtz equation for the vorticity perturbation ω(x, y, t) = ∇× u = (ξ, η, ζ):

(Dt +Ψxy)η +Ψxxξ = ik(W + 2Ω)v, (4.7)

which may be expressed exclusively as a function of u and v, using the relations
ikη = (∂xx − k2)u + ∂xyv and ikξ = −∂xyu − (∂yy − k2)v obtained taking into account
the incompressibility constraint.

Viscosity may be easily taken into account by replacing Dt by Dt− ν(∂xx +∂yy− k2)
in the left-hand side of (4.6) and (4.7). This is the reason why the terminology ‘Orr–
Sommerfeld’ and ‘Squire’ equations has been used. SP94 have solved the viscous
problem with an alternative formulation, and Klaassen & Peltier (1985, 1989, 1991)
included the effects of stratification. For basic flows with parallel streamlines, (4.6)
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and (4.7) reduce to the classical Orr–Sommerfeld and Squire equations that are not
decoupled owing to the Coriolis force. Furthermore, Squire’s theorem does not hold,
as mentioned by Yanase et al. (1993). And finally, in the context of Görtler instability
with system rotation and for a spatially varying basic flow, an equivalent formulation
is given by Bottaro et al. (1996).

5. Eigenvalue problem
5.1. Floquet analysis

The linear system composed of (4.6) and (4.7) for v = (u, v) may be written

∂tL1v(x, y, t) =L2v(x, y, t) (5.1)

where Li =Li(Ψ ;Ω, k) for i = 1, 2 are linear operators involving the partial deriva-
tives of the streamfunction and the square of the spanwise wavenumber of the
perturbation. It is then sufficient to consider

k > 0.

In fact this may be directly concluded from (4.3), which is invariant under the
transformation (k, w)→ (−k,−w).

For spatially periodic basic flows, with period lx = 2π/α, (5.1) involves lx-periodic
coefficients, and Floquet theory (Kelly 1967; Herbert 1983, 1988; Klaassen & Peltier
1985, 1989, 1991) allows one to seek perturbations of the form

v(x, y, t) = eσteiµxṽ(x, y) (5.2)

where the complex number µ′ = iµ is a Floquet exponent, and ṽ(x, y) are lx-periodic
like the basic flow (lx = 2π for the Stuart vortices). In order to perform a temporal
stability analysis (σ complex), the Floquet exponent µ′ is purely imaginary and µ is
now a (real) parameter of the problem (a spatial stability analysis requires σ imaginary
and µ complex). According to Herbert (1988), it is easy to check that Floquet modes
(5.2) are invariant under the transformation µ → µ ± pα, with p integer, because
exp(±ipαx)ṽ(x, y) is invariant under the translation x → x ± lx. Therefore, it is
sufficient to consider −α/2 < µ 6 α/2. Klaassen & Peltier (1989) have provided a
detailed discussion of the symmetries involved in the Floquet modes for the stratified
free shear layer.

5.2. Fundamental and subharmonic modes

Since the product of two periodic functions is periodic if the ratio of the periods is
a rational number, the Floquet mode (5.2) is periodic if |µ/α| = m/n, with m and n
integer numbers. Recalling that α = 2π/lx is the wavenumber of the basic flow and
that −1/2 < µ/α 6 1/2, there are two main classes of modes, according to Herbert
(1988).

The fundamental modes (µ/α = 0) are lx-periodic like the basic flow. Physi-
cally, without the Coriolis force, they tend to deform in phase spatially and three-
dimensionally (with spanwise wavenumber k) the structure of the basic flow: they
correspond to aligned ‘Λ-patterns’ observed in boundary-layers (Herbert 1983, 1988)
and to ‘translative’ instabilities observed in mixing layers (Pierrehumbert & Widnall
1982; Metcalfe et al. 1987).

The subharmonic modes (µ/α = 1/2) have twice the periodicity of the basic flow. For
non-rotating shear flows, these 2lx-periodic modes excite the staggered ‘Λ-patterns’ of
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boundary layers (Herbert 1983, 1988), and for mixing layers with rolled-up Kelvin–
Helmholtz vortices (in fact the Stuart streamfunction) Pierrehumbert & Widnall
(1982) showed that the subharmonic modes excite the ‘helical pairing’ of two adjacent
vortices.

According to Herbert (1983, 1988), fundamental modes are associated with primary
resonance in the Floquet system, and subharmonic ones with the principal parametric
resonance. Other classes of modes in the range 0 < |µ/α| < 1/2 exist (‘detuned’
following the terminology of Herbert 1988), periodic if µ/α is rational or aperiodic
otherwise. For purely two-dimensional perturbation (k = 0), Pierrehumbert & Wid-
nall (1982) showed that fundamental modes of Stuart vortices are neutral, whereas
subharmonic are amplified. Klaassen & Peltier (1989) showed that the most unstable
two-dimensional modes are the pairing ones (µ/α = 1/2), and they also showed that
modes such that |µ/α| = 1/n, with n > 2, tend to amalgamate more than two adjacent
vortices, but are less amplified than subharmonic modes. This is of course consistent
with experimental observations and numerical simulations showing frequent pairings.
This is also consistent with Lamb’s linear stability analysis of the array of periodically
spaced co-rotating point vortices (Lamb 1932), where the most unstable modes are
subharmonic.

5.3. Symmetries and spectrum

With (5.2), the eigensystem (5.1) becomes

σL1ṽ(x, y) =L2ṽ(x, y) (5.3)

with nowLi =Li(Ψ ;Ω, k, µ) for i = 1, 2. Thus, given a basic flow and the parameters
(Ω, k, µ), the problem consists in seeking eigenmodes (σ, ṽ) of (5.3) such as ṽ(x, y),
lx-periodic, vanishes when y → ±∞. The system is composed of the non-parallel
Orr–Sommerfeld and Squire equations (4.6) and (4.7) which read now respectively

σ(∂̃xx + ∂yy − k2)ṽ = (−2Wx∂̃x + 2Ψxy∂̃xy −Wxx + (Ψxx − 2Ω)(∂̃xx − k2)−Ψxx∂yy)ũ

+(−Wx∂y −Wy∂̃x −Wxy − 2Ψxy∂̃xx + 2(Ψxx − Ω)∂̃xy

−(Ψy∂̃x −Ψx∂y −Ψxy)(∂̃xx + ∂yy − k2))ṽ,

σ((∂̃xx − k2)ũ+ ∂̃xyṽ) = (Ψxx∂̃xy − (Ψy∂̃x −Ψx∂y +Ψxy)(∂̃xx − k2))ũ

+(Ψxx∂yy − k2(2Ω −Ψyy)− (Ψy∂̃x −Ψx∂y +Ψxy)∂̃xy)ṽ,

where ∂̃x = iµ+∂x, ∂̃xx = (iµ+∂x)
2 and ∂̃xy = (iµ+∂x)∂y . Taking the complex conjugate

of (5.3), it is easy to check that (σ∗, ṽ∗) is an eigenmode for (Ω, k,−µ), exhibiting the
same growth rate s = Re(σ) as that of the mode (σ, ṽ). Then it is sufficient to consider
µ positive, and thus, taking into account previous considerations,

0 6 µ 6 α/2.

As for the non-rotating case (Pierrehumbert & Widnall 1982), it may be shown
that the spectrum of eigenvalues associated to the given parameters (Ω, k, µ) contains
±σ and ±σ∗. Let (σ, ũ, ṽ) be a Floquet mode of (5.3) for the parameters (Ω, k, µ).
Indeed, applying first the transformation y → −y in (5.3), and taking into account
the symmetries of the Stuart streamfunction (3.1) and its derivative, it is easy to
verify that (−σ,−ũ, ṽ) is an eigenmode for the same set of parameters. It means that
the eigenvalue spectrum contains σ and −σ; the immediate consequence is that for
each unstable mode there is a corresponding stable mode, and then the basic flow
is at best neutrally stable. As already mentioned by Pierrehumbert & Widnall (1982)
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for the non-rotating case, this is a manifestation of the time-reversibility of Euler
equations and does not hold with viscosity: with t→ −t it is always possible to find
an additional transformation leaving the Euler equations invariant. Now taking the
complex conjugate of (5.3) and applying x→ −x, it is easy to check that (σ∗, ũ∗,−ṽ∗)
is also an eigenmode for the parameters (Ω, k, µ). It follows immediately that −σ∗
belongs as well to the eigenvalue spectrum associated with these parameters. Thus,
in the complex map, the spectrum contains ±σ and ±σ∗.

6. Spectral resolution
6.1. Fourier–Chebyshev series

In order to transform the infinite interval y ∈ ] − ∞; +∞[ to the finite one Y ∈ ]
−1; +1[ , the exponential mapping (Metcalfe et al. 1987)

Y = tanh(y/H)

has been used. The lx-periodic eigenfunctions may then be expanded in the double
infinite series

ṽ(x, y) =

+∞∑
m=−∞

+∞∑
n=0

ṽm,ne
iαmxTn(Y ), (6.1)

where the Chebyshev polynomials Tn(Y ) = cos(nθ) with θ = arccosY and θ ∈ ]0; π[ ,
satisfy naturally the boundary conditions when Y → ±1 (Canuto et al. 1988).

6.2. Truncations

The truncation of the series must take into account certain relations between the
unknown coefficients ṽmn = (ũm,n, ṽm,n), in order to respect symmetries of the Stuart
streamfunction and its derivative. Indeed, Klaassen & Peltier (1989) have shown by
symmetry considerations that

ṽm,n = ±(−1)nṽ−(m+2µ/α),n, (6.2)

a relation satisfied only if m + 2µ/α is integer. Thus, for the fundamental modes
(µ/α = 0), the truncation must retain coefficients with m = m0 and m = −m0 in order
to satisfy ṽm,n = ±(−1)nṽ−m,n. Then, for fundamental modes, a possible truncated
expansion is

ṽ(x, y) =

M ′∑
m=−M ′

N−1∑
n=0

ṽm,ne
iαmx cos(nθ), M ′ = (M − 1)/2 with M even.

From (6.2), in the case of subharmonic modes (µ/α = 1/2), the coefficients verify
ṽm,n = ±(−1)nṽ−m−1,n. In order to conserve the symmetries of Stuart flow, coefficients
with m = m0 and m = −m0−1 have to appear in the expansion (6.1), which is satisfied
with:

ṽ(x, y) =

M ′−1∑
m=−M ′

N−1∑
n=0

ṽm,ne
iαmx cos(nθ), M ′ = M/2 with M odd.

Klaassen & Peltier (1989) have shown that violations of these requirements may lead
to erroneous results. In fact, it may be verified that these different truncations for
fundamental and subharmonic modes are equivalent to those used by Herbert (1983,
1988).

For basic flows with parallel streamlines, such as for example the hyperbolic-tangent
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Figure 3. Two-dimensional stability calculations (k = 0) and comparison with data from Michalke
(1964) ( • ). (a) Mixing layer for various streamwise wavenumbers α; (b) subharmonic modes of the
Stuart vortices (the • at ρ = 1 corresponds to the point vortex case, Lamb 1932).

mixing layer U(y) = tanh(y) (Stuart’s streamfunction with ρ = 0), it is possible to
seek eigenmodes of the form v′(x, t) = eσteiαxeikzv(y) (α real), and to expand v(y) with
Chebyshev polynomials using the same mapping.

6.3. Collocation points

To achieve the discretization of the continuous problem, we choose the collocation
method instead of the Galerkin method for its simplicity of programming. The
following collocation points are chosen:

xj = 2πj/M, j = 0, · · · ,M − 1 and θk = (2k + 1)π/(2N), k = 0, · · · , N − 1

in order to avoid the singular limits y → −∞ (θ → π−) and y → +∞ (θ → 0+). Thus
the problem consists now in seeking the eigenvalues of the (2MN)2-matrix problem
σL1V = L2V , with the eigenvectors V = (ũm,n, ṽm,n). The complex matrix eigenvalue
problem is solved by a standard QZ algorithm, which computes the 2MN eigenvalues
of the discrete spectrum, and the associate eigenvectors.

The numerical parameters (H , M and N) are chosen in order to obtain good
agreement with known results, such as for example the temporal stability analysis of
the parallel tanh-mixing layer (Michalke 1964) plotted on figure 3(a). Two-dimensional
stability calculations of the Stuart vortices are plotted on figure 3(b). For ρ = 0, the
growth rate corresponds to Michalke’s results (1964) for α = 1/2, and it shows that
results are erroneous when one reaches the singular point-vortex limit (ρ → 1) for
which the temporal growth rate of the subharmonic instability is s = 1/4 (Lamb
1932). The shape of the curve is similar to previous results (Pierrehumbert & Widnall
1982; Klaassen & Peltier 1989).

Another convenient way to test the numerical method is to solve σṽ(x, y) = M ṽ(x, y)
and compare with the exact eigenvalues λ = ±(−Φ)1/2 of the inertial tensor (4.4), with
Φ given by (4.5). A good compromise has been found with H = 0.7, M = 9 (resp.
M = 10) Fourier coefficients and N = 16 (resp. N = 15) Chebyshev polynomials for
the fundamental (resp. subharmonic) Floquet modes.
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Figure 4. Growth rate of the subharmonic modes of the Stuart vortices with ρ = 1/3.

7. Global tendencies
7.1. Stabilizing and destabilizing rotations

Because the vorticity distribution of Stuart vortices is everywhere negative, Ω < 0
corresponds to a cyclonic rotation, whereas Ω > 0 corresponds to an anticyclonic
one. Figure 4 is representative of the important role of the Coriolis force in the
linear stability of Stuart vortices. This map represents the growth rate of the most
unstable subharmonic mode as a function of the spanwise wavenumber k and of
the rotation rate Ω, for ρ = 1/3 in (3.1). For k = 0, pairing modes are amplified
with a growth rate s = 0.239 consistent with previous results (Pierrehumbert &
Widnall 1982; Klaassen & Peltier 1989), whatever the background rotation since two-
dimensional perturbations are unaffected. As soon as k grows, the influence of the
Coriolis force on three-dimensional perturbations becomes apparent: a strong peak
of instability is observed for weak anticyclonic rotations whereas stronger positive
rotation rates tend to stabilize the basic flow by a cut-off effect. Similar results were
obtained by SP94 for the viscous Kelvin–Helmholtz rolls under the effect of rotation.
Thus, for Ω = 1, only long-wavelength perturbations are amplified, whereas above
a critical spanwise wavenumber (k ≈ 1), three-dimensional short-wave perturbations
are neutral. Qualitatively the same short-wave cut-off happens for cyclonic rotations,
except that a little hump of instability tends to catch hold of the larger unstable band
for large wavenumbers.

Looking at the isolevels on the base of figure 4, the growth rate tends to asymptote
to a constant value for growing k. The same qualitative tendencies have been found
for the fundamental Floquet modes (Leblanc & Cambon 1996), except for long-wave
three-dimensional perturbations (k ≈ 0), which are neutral at vanishing k (Pierre-
humbert & Widnall 1982). Furthermore, for large k, fundamental and subharmonic
modes were found to behave identically, even for the non-rotating case. This result is
partially in contradiction with eigenvalue calculations by Pierrehumbert & Widnall
(1982) who found that three-dimensional fundamental modes are unstable with a
growth rate reaching a constant value at large wavenumber, whereas the subhar-
monic ‘helical pairing’ modes become neutral above a spanwise cut-off, contrary to
the present results. This will be discussed later.

Temporal stability calculations are in qualitative agreement with experimental ob-
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servations by Bidokhti & Tritton (1992) on a spatially developing turbulent mixing
layer: “the roller eddy pattern, familiar in non-rotating flow, was observed in all sta-
bilized flow, but was almost completely disrupted by even weak destabilization”. These
tendencies are also in agreement with viscous stability calculations by SP94.

7.2. Localized eigenmodes

The Coriolis force alters considerablely the shape of the Floquet modes. Even if the
instabilities are three-dimensional, the spanwise component of the perturbation of
vorticity

ζ(x, y, t) = eσteiµx(∂̃xṽ − ∂yũ)
gives useful information. On figure 5 is plotted the most unstable fundamental mode
(µ = 0) for various anticyclonic rotations in the unstable range, and for a moderate
spanwise wavenumber (k = 2). Recall that they are 2π-periodic like the Stuart vortices;
the nature of the instability changes with rotation, as pointed out firstly by SP94.

The following discussion is qualitative, and concerns only a particular value of
the wavenumber k. As a consequence, this is not a ‘zoological’ classification of the
different eigenmodes that could be obtained for all values of the control parameters of
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the problem (Ω, k, µ). However, the instabilities described below seem representative
of the short-wave behaviour of the eigenmodes (k →∞), on which most of the present
study is focused.

In the non-rotating case (figure 5a), the fundamental eigenmode has a complex
structure: it exhibits a dipole structure in the elliptical core of the vortices and extends
into the braid region. Near the core, the topology of the eigenmode is close to that of
the ‘elliptical instability’ (Pierrehumbert 1986; Waleffe 1989, 1990). In the hyperbolic
regions, the structure of the eigenmode could correspond to the streamwise ribs
linking adjacent vortices in rolled-up mixing layers (Ho & Huerre 1984; Metcalfe
et al. 1987; Lasheras & Choi 1988), and to the ‘braid’ mode of SP94. For weak
anticyclonic rotation (figure 5b), the eigenmode exhibits a similar shape. In these two
cases, which correspond to a moderate spanwise wavenumber (k = 2), the topology
of the modes suggests the coexistence of both elliptical and hyperbolic instabilities.

In the non-rotating case, for Stuart vortices, Klaassen & Peltier (1991) identified
only a mode centred “near the braid stagnation points” (see their figure 26), but for
the highest value of the spanwise wavenumber (k = 5). However they did not connect
it to the ‘hyperbolic instability’ of the corresponding quadratic flow, to which tends
asymptotically the growth rate of the most unstable eigenmode of Stuart’s vortices
when k →∞ (see further discussions), clearly in accordance with their observations.

For moderate rotation rates (figure 5c, d), the eigenmodes become localized into
the vortex cores, and exhibit a shape close to the elliptical instability in an inertial
frame (Pierrehumbert 1986; Waleffe 1989, 1990). SP94 observed similar behaviour
with the viscous linear modes of the nonlinearly saturated Kelvin–Helmholtz vortices
(the ‘core’ mode). Stronger anticyclonic rotations (figure 5e, f) modify the topology
of the eigenmodes, and seem to tilt the structure of the elliptical instability.

Finally, the ‘edge’ mode discovered by SP94, which is focused into a ring-shaped
region surrounding the central vortex, and explained by the generalized Rayleigh
criterion of Kloosterziel & van Heijst (1991), has not been recovered in the present
study. A possible explanation could be that the rolled-up Kelvin–Helmholtz vortices,
which are the basic states in SP94, exhibit elliptical cores with weaker ellipticity
than in our stability calculations. Thus, if the vortices are nearly circular, it seems
reasonable to explain these ‘edge’ modes by the generalized Rayleigh criterion (SP94).
This criterion predicts instability at a given radius, and then is localized on the
corresponding streamline (LC97). The reason why the present study does not explore
the weak ellipticity regime (ρ → 1) is that Stuart’s streamfunction becomes singular
(array of point vortices), and requires a more accurate resolution.

8. Short-wave breakdown
8.1. Pressureless eigenmodes

In accordance with Bayly (1988) and several works on turbulence modelling (see
Cambon et al. 1985, 1994; and references therein), LC97 showed that the Coriolis
force promotes ‘pressureless’ modes. Indeed, formally speaking, the linear problem
(4.3) can also be written:

Dtv + M v = 1/k2(∇Dt∇ · v). (8.1)

If the right-hand side vanishes, the ‘pressureless’ dynamics are governed by

Dtv + M v = 0, (8.2)
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also obtained by crudely dropping out the pressure term in the complete linear prob-
lem (4.3). When the physical problem or the basic flow exhibits a characteristic length
scale (the spatial period of the Stuart vortices in the present case), (8.2) is recovered
from (8.1) at large wavenumber (k →∞), leading to short-wave eigenmodes strongly
localized on streamlines, as pointed out by Pierrehumbert (1986). Following Bayly
(1988), LC97 showed that the behaviour of centrifugal and rotation-induced short-
wave instabilities is given at first order by the oversimplified pressureless analysis, and
for complex vortical flows, Leblanc (1997) showed its relevance using the geometrical
optics stability theory (see further discussions).

In order to avoid confusion, it must be realized that v(x, y, t) in (8.2) is not a physical
two-dimensional velocity field. Such an interpretation, used by Tritton & Davies
(1981) and others with the ‘displaced-particle’ approach, leads to violation of the
incompressibility constraint (see discussion in LC97). The true velocity perturbation is
v′(x, t) = eikzv(x, y, t), which is two-component but highly three-dimensional, since the
short-wave condition says that the variability with respect to the spanwise coordinate
(z) is much higher than the variability with respect to planar coordinates (x, y).

System (8.2) is a linear problem with spatially periodic coefficients and also ad-
mits the Floquet representation (5.2). With homogeneous boundary conditions, the
pressureless eigenvalue problem

(σ +U · ∇)ṽ(x, y) + M ṽ(x, y) = 0 (8.3)

may be computed numerically and compared to the ‘exact’ linear problem (5.3) for
large wavenumbers. Fundamental and subharmonic eigenmodes of (8.3) admit the
same growth rate s = Re(σ) but a different frequency ω = Im(σ), because the Floquet
parameter µ appears only in the convective operator U · ∇ = Ψy(iµ+ ∂x)−Ψx∂y .

A comparison between three-dimensional short-wave instabilities and pressureless
solutions is plotted on figure 6. It is clearly seen that at large wavenumber, funda-
mental and subharmonic Floquet modes exhibit a comparable temporal behaviour,
even in the non-rotating case contrary to the results of Pierrehumbert & Widnall
(1982). The slight differences between figures 6(a) and 6(b) come from the different
truncation schemes used for fundamental and subharmonic modes. Possible expla-
nations of the subharmonic cut-off found by Pierrehumbert & Widnall (1982) could
be their low resolution, or the domain truncation. Experimental observations of the
subharmonic cut-off for secondary instability of Tollmien–Schlichting waves (Herbert
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1988) could be a consequence of viscosity (Lagnado et al. 1984; Craik & Criminale
1986; Landman & Saffman 1987; Lifschitz 1991; SP94). Figure 6 also shows that the
temporal behaviour of short-wave three-dimensional instabilities asymptotes to the
pressureless solution.

8.2. Hyperbolic and elliptical instabilities

Unbounded flows with a quadratic streamfunction

Ψ (x, y) = − 1
2
((γ − ε)x2 + (γ + ε)y2)

have been studied extensively in the context of rapid distortion theory (RDT) of
homogeneous turbulence in both rotating and non-rotating frames (Batchelor &
Proudman 1954; Cambon 1982; Cambon et al. 1985; and others) and more recently in
the context of hydrodynamic stability theory (Lagnado et al. 1984; Craik & Criminale
1986; Pierrehumbert 1986; Bayly 1986; Landman & Saffman 1987; Craik 1989;
Waleffe 1989, 1990; and others). The close links between these two approaches are
reviewed by Cambon et al. (1994). In particular, both allow a wave-like perturbation
with a time-dependent wave vector to be sought:

[u′, π′](x, t) = eik(t)·x[u, π](t),

where the projection on the (x, y)-plane of k(t) is denoted by α(t), which is a solution
of

α̇ = −N Tα

with N = ∇U given by (3.2), whereas its spanwise component k = k(t) · ez is constant.
The physical interpretation is that the wave vector follows the deformation induced by
the basic flow, so that its initial value k(0) = K is related to Lagrangian coordinates
(Cambon et al. 1985, 1994).

The ‘motion’ of α(t) is easily integrated for the three classes of flows (elliptical,
hyperbolic or pureshear). Substitution into the Euler equation (linearized or not since
each single mode verifies u′ · ∇u′ = 0) leads to a linear system with time-dependent
coefficients that may be written in the following form:

v̇ + M v = ααT/|k|2(M + N )v. (8.4)

M is the inertial tensor defined by (4.4), v(t) is the projection of u(t) on the (x, y)-plane,
and the time-dependent right-hand side of (8.4) is the contribution of the pressure
perturbation. Equation (8.4) may be analytically integrated for some particular initial
conditions on α(t) (see Cambon 1982; Cambon et al. 1985, 1994 for RDT, and
Lagnado et al. 1984; Craik & Criminale 1986 for hydrodynamic stability). In the
elliptical case, it seems to the authors that the first evidence of an instability appears
in Cambon’s (1982) thesis (see also figures 4–6 in Cambon et al. 1985), even though
Bayly (1986) was the first to perform a Floquet analysis, taking advantage of time-
periodicity of the coefficients involved in the right-hand side of (8.4). His results
confirmed the spectral calculations of Pierrehumbert (1986) who concluded that the
so-called ‘elliptical instability’ was a generic mechanism for secondary instability in
shear flows, as soon as the streamlines of the non-parallel basic flow exhibit elliptical
regions (see the review by Bayly et al. 1988). This has been commonly accepted and
the structure of the localized eigenmodes of the elliptical instability (Pierrehumbert
1986; Waleffe 1989, 1990) was in good agreement with three-dimensional secondary
instabilities of shear flows with non-parallel streamlines (Orszag & Patera 1981, 1983;
Pierrehumbert & Widnall 1982; Klaassen & Peltier 1985, 1989, 1991; Lundgren &



Effects of the Coriolis force on the stability of Stuart vortices 371

Mansour 1996; Sipp & Jacquin 1997). This is the ‘core’ mode of SP94. The recent
experiments of Leweke & Williamson (1998) show nicely the birth of the elliptical
instability in the cores of a dipole.

During the past decade, from a theoretical point of view, the role of hyperbolic
regions for secondary instability has been completely omitted, contrary to RDT which
predicts that hyperbolic regions for the ‘mean field’ are well-known to be places where
intense ‘production’ of turbulent kinetic energy occurs (Batchelor & Proudman 1954;
Cambon 1982; Cambon et al. 1985, 1994). However, recently Friedlander & Vishik
(1991) showed with the ‘geometrical optics’ stability methods (see also Lifschitz &
Hameiri 1991) that in an inertial frame any inviscid incompressible flow with a
hyperbolic stagnation point is unstable, confirming the results of Lagnado et al.
(1984) for unbounded quadratic flows with hyperbolic streamlines. The ‘hyperbolic
instability’ corresponds of course to the ‘braid’ mode identified by SP94 (see their
figure 14) which was shown to be dominant in the non-rotating case. According
to Klaassen & Peltier (1985, 1989, 1991), hyperbolic (or braid) instability is closely
linked to the longitudinal vortices (or ‘ribs’) in secondary instabilities of mixing layers
(see for example Ho & Huerre 1984; Metcalfe et al. 1987; Lasheras & Choi 1988).
The mechanism of vortex line stretching in the plane of the basic flow, “along the
principal axis of extensional strain” well depicted by Lagnado et al. (1984), and also
known in RDT works, appears to be a generic mechanism in inviscid and viscous
flows: in the wake of a cylinder, Williamson (1996) observed experimentally his ‘mode
B’, and by direct numerical simulations, Leblanc & Godeferd (1997) pointed out
that two-dimensional Taylor–Green cells with a square aspect ratio (no elliptical
cores) perturbed three-dimensionally lead to the formation of ‘vortex fingers’ in the
hyperbolic regions. This is confirmed by stability analyses (Sipp & Jacquin 1997).

As first pointed out by Cambon (1982) in the RDT context, very simple solutions
of (8.4) may be found when the time-dependent right-hand side vanishes. Such modes
correspond to a constant pure spanwise wave vector k(t) = (0, 0, k) which is satisfied
for the initial condition α(0) = 0. The pressure field plays no role in these instabilities,
which are solutions of

v̇ + M v = 0

and which take the simple form v′(x, t) = eσteikzv0 with

σ = (ε2 − γ2
t )

1/2 (8.5)

where γt = γ+ 2Ω is half the tilting vorticity of the quadratic flow. These pressureless
(but nevertheless exact) perturbations are amplified if |ε| > |γ + 2Ω| and neutral
otherwise. Because of the fact that they are not spatially localized in the (x, y)-plane
these pressureless disturbances seem to have no physical interpretation. Obviously,
without the Coriolis force, they are neutral in the elliptical case |γ| > |ε|: instability
occurs for oblique wave vectors (Bayly 1986). But, according to Lagnado et al. (1984)
they are amplified in the hyperbolic case |γ| < |ε|. Furthermore, in a rotating frame,
they are amplified when the rotation rate lies in the range

|γ| − |ε| < 2Ω < |γ|+ |ε|,

where, without lost of generality, ε and γ are negative in order to be consistent with
(3.3). And, over this bandwidth, numerical integration of the Floquet problem (8.4)
for the elliptical case by Cambon et al. (1994) showed that they are the most amplified
(see their figure 4c–e). By inspection of the equation for the vorticity perturbation,
they showed that the zero absolute vorticity case (γ + Ω = 0) is neutral if |γ| > |ε|.
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Figure 7. Comparison between subharmonic instabilities for k = 100 ( © ), quadratic instabilities
with pure spanwise wavevector ( , hyperbolic; , elliptical) and the instability criterion
( ). (a) ρ = 0; (b) ρ = 1/10; (c) ρ = 1/5; (d) ρ = 1/3. The • correspond to the maximum
growth rate of elliptical instability with time-dependent wavevector (from Landman & Saffman
1987).

8.3. Mode selection by rotation: the tuning effect

The role of these quadratic instabilities for the Stuart vortices is illustrated on figure
7. The analytical growth rate of perturbations with pure spanwise wave vector (8.5)
is plotted for hyperbolic regions and elliptical cores characterized by (3.2) and (3.3).
Comparison is made with short-wave three-dimensional subharmonic eigenmodes of
the Stuart vortices. The two maxima of instability in the unstable range, also observed
on figures 4 and 6 at large spanwise wavenumber k, correspond in fact to two distinct
mechanisms which compete: namely hyperbolic and elliptical instabilities. For weak
cyclonic and anticyclonic rotations, short-wave instabilities reside in the hyperbolic
region, as in the non-rotating case. This instability is replaced by the elliptical one for
stronger anticyclonic rotation (Ω > 0). This illustrates again the ‘tuning’ effect of the
Coriolis force, which selects and/or kills instability.

In the non-rotating case, the maximum growth rate of elliptical instability with an
oblique time-dependent wave vector is also plotted on figure 7. The results are from
figure 1 in Landman & Saffman (1987): their eccentricity parameter ‘β’ corresponds
to ε/γ given by (3.3) for elliptical cores, and their dimensionless growth rate ‘σI ’
has to be multiplied by γ. Recall that Waleffe (1989, 1990) has shown that, at small
eccentricity, the dimensionless growth rate behaves as 9

16
ε/γ. For the Stuart vortices,

figure 7 is an illustration that for short waves, instability is governed by hyperbolic
regions rather than elliptical cores, as previously shown qualitatively by SP94. This
result does not call the ‘universality’ of elliptical instability in question, but it simply
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shows the crucial role of hyperbolic stagnation points completely omitted in the basic
mechanisms of secondary instabilities in shear flows (see for example Bayly et al.
1988).

When ρ = 0 (figure 7a), the calculations correspond to oblique waves with α = 1/2
of the hyperbolic-tangent mixing layer, studied first by Johnson (1963) and then
reconsidered by Yanase et al. (1993) including viscous effects. The parallel basic flow
no longer exhibits elliptical or hyperbolic stagnation points, and the two distinct
instability bandwidths are lost in the range 0 < Ω < 1/2, consistent with the
Pedley criterion. The behaviour of short-wave oblique modes is similar to instabilities
with a pure spanwise wave vector (figure 1), and this short-wavelength behaviour
is given by the pressureless analysis (LC97). In the viscous case, a cut-off should
happen above a critical spanwise wavenumber, as pointed out for quadratic flows by
Lagnado et al. (1984), Craik & Criminale (1986) and Landman & Saffman (1987).
For non-homogeneous flows this viscous cut-off mechanism leads to a preferred
spanwise wavenumber at which instability occurs (Yanase et al. 1993; SP94). The
same mechanism also occurs in classical Rayleigh–Taylor instability (see Drazin &
Reid 1981) for which viscosity selects the critical spanwise wavenumber.

8.4. The Lifschitz & Hameiri theory

The geometrical optics stability theory for short-wave instabilities developed by
Lifschitz & Hameiri (1991) may be applied to rotating fluids (Bayly et al. 1996;
Lebovitz & Lifschitz 1996; Leblanc 1997). This powerful alternative to classical
stability methods consists in seeking the perturbation in the WKB form:

[u′, π′](x, t) = eiφ(x,t)/ε[a, π](x, t) + O(ε)

where ε is a small parameter, φ(x, t) is the phase field (real-valued) and a(x, t) is the
complex amplitude. The above expansion also contains terms of order ε (Lifschitz &
Hameiri 1991), not written here for brevity. Injecting into the linearized equations (4.2)
or (4.3) and equating the different order terms yields (after elimination of pressure by
applying the ‘projector’ familiar to the turbulence community)

Dtφ = 0:

the phase field is convected by the basic flow. Introducing the wave vector k(x, t) = ∇φ,
α(x, t), its projection on the (x, y)-plane, and v(x, t), the projection of a(x, t), the linear
problem (4.3) now reads

Dtα = −N Tα,

Dtv + M v = ααT/|k|2(M + N )v,

which is a set of partial differential equations evolving along the trajectories of the
basic flow. This system is analogous to ‘Kelvin’s’ set of equations for quadratic flows
(8.4), except that the coefficients are no longer constant but are space-dependent.
Introducing a Lagrangian representation, the above system is reduced to a system
of ordinary differential equations that may be solved sequentially for suitable initial
data. The remarkable idea of the geometrical optics stability theory lies in the fact
that the instability is localized along a trajectory of the basic flow (such as stagnation
points for example), and vanishes outside, so that the stability problem frees itself
of the boundary conditions. This concept was also introduced in Bayly (1988, 1989).
Lifschitz & Hameiri (1991) showed that a sufficient condition for instability is that
|a(X , t)| → ∞ when t→∞ along the trajectory X .
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They showed that any steady flow in an inertial frame is unstable if it contains a
stagnation point (hyperbolic, elliptical or pure shear). In a rotating flow, the conclusion
is not straightforward, since the Coriolis force may have killed three-dimensional
instabilities (at zero absolute vorticity for a vortex core for example). Leblanc (1997)
showed that for pure spanwise wave vectors k(x, t) = kez , the pressureless problem
(8.2) makes sense, and that the flow is unstable if Φ(x0, y0) < 0 on a stagnation point
located at (x0, y0) (Φ is the general discriminant). This sufficient stability condition
was used to show that Chaplygin’s dipole (see Meleshko & van Heijst 1994) moving
along a circular path is unstable.

Concerning Stuart vortices, on the stagnation points, the general discriminant (4.5)
reads

ΦE = (2Ω − ρ/(1− ρ))(2Ω − 1/(1− ρ)),
ΦH = (2Ω + ρ/(1 + ρ))(2Ω − 1/(1 + ρ)),

and the growth rate (in both Lagrangian and Eulerian representations) of these short-
wave instabilities is (−ΦE,H )1/2, identical to the growth rate of the quadratic modes
given by (8.5), and plotted on figure 7. This provides a direct link between this recent
theory and the classical spectral methods.

8.5. Towards a general criterion for complex flows?

Finally, LC97 suggested that the extended criterion could be valuable for any complex
vortical flow, that is to say Φ(x, y) < 0 somewhere implies instability. The starting point
is the pressureless equation (8.2), which, in a Lagrangian representation, involves time-
dependent coefficients. If the streamlines are closed, a Floquet analysis on streamlines
is needed (Bayly 1988, 1989; Sipp & Jacquin 1997).

The pressureless problem (8.2) involves the convective operator U · ∇( ). Obviously,
if it cannot be dropped out or diagonalized on the same basis as the inertial tensor, as
pointed out by Bayly (1988), nothing can be concluded on the temporal behaviour of
the perturbations, even for pressureless modes. On figure 7 (thin solid lines) is plotted
the maximum temporal growth rate of the simple linear problem ∂tv+ M v = 0, given
by

max
(x,y)

[−Φ(x, y)]1/2.

It is seen that the criterion is in good agreement with the linear stability calculations:
the unstable bandwidth includes the two kinds of instability (hyperbolic and elliptical).
The magnitude of the growth rate of short-wave (or pressureless) modes is also in
good agreement with the theoretical predictions. This is perhaps an anecdotal result,
but this criterion has been also tested successfully on Taylor–Green cells and Mallier–
Maslowe vortices, both in rotating and inertial frames.

This illustrates the role of the convective operator in linear stability of complex
vortical flows. Recall that for simple rotating flows (parallel shear flows, circular
vortices and quadratic flows), the convective operator may always be dropped out by
a convenient choice of the wave vector of the perturbation, and thus the growth of
short-wave or pressureless unstable modes is governed exactly by the above expression.

9. Rapid rotation
9.1. Stabilization

Under rapid rotation (cyclonic or anticyclonic), the unstable band is narrowed down
to the k = 0 axis, as illustrated by figure 8(a). Three-dimensional instabilities are
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Figure 8. Fundamental modes for ρ = 1/10 under various rotations ( 5 , Ω = 0;
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thus stabilized by strong rotation rates, and only two-dimensional Floquet modes
(unaffected by the Coriolis force) survive (the subharmonic ones). This may be
interpreted as a manifestation of the Taylor–Proudman theorem, as discussed recently
by SP94 and Carnevale et al. (1997). For an elliptical vortex core, Lebovitz & Lifschitz
(1996) have shown that instability is killed in the limit Ω →∞.

Following Batchelor (1967, p. 558), the Taylor–Proudman theorem states that:
steady motions at small Rossby number (rapid rotation) must be a superposition of a
two-dimensional motion in the (x, y)-plane and a spanwise motion which is independent of
z. As mentioned in the Introduction, transition to two-dimensional turbulence and the
emergence of vortices is outside its scope, because it involves complex nonlinear mech-
anisms. Indeed, for homogeneous rotating turbulence, the two-dimensionalization is
equivalent to a concentration of the spectral density of energy towards the ‘two-
dimensional manifold’ characterized by k · Ω = 0, where k is the three-dimensional
wave vector in spectral space. From a spectral standpoint, the Taylor–Proudman
theorem only says that the ‘slow manifold’ (the stationary mode of the linear regime)
is the two-dimensional one (k ·Ω = 0), but explaining the nonlinear angular drain of
energy towards the two-dimensional manifold is outside its scope (see Waleffe 1993;
Babin et al. 1996; Cambon et al. 1997).

Figure 8(a) also illustrates the destabilizing influence of the Coriolis force for a weak
anticyclonic rotation, compared to the non-rotating case. This latter case (Ω = 0)
illustrates again the role of the instability linked to the hyperbolic stagnation points
which becomes dominant for short-wave instability (k > 5.5, above which s increases
with k), whereas the destabilizing case (Ω = 1/4) is still dominated by the elliptical
modes.

9.2. Inertial waves

Even though three-dimensional modes tend to be neutral (s = Re(σ) → 0) under
rapid rotation, their frequency ω = Im(σ) is close to 2Ω, as illustrated by figure 8(b).
This is not really surprising since for short-wave instabilities k � 1 at large rotation
rate |Ω| � k, crudely neglecting all gradient terms, the spectral problem reduces to

σṽ(x, y) + C ṽ(x, y) = 0

with C the Coriolis tensor defined in (4.4). The eigenvalues are σ = ±2Ωi. These
neutral modes may be interpreted as inertial waves (Greenspan 1969). Indeed, in
an unbounded flow at rest in a rotating frame, plane inertial waves propagate, with
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dispersion law ω = ±2Ω cos θ, where θ is the angle between the (constant) wave
vector and the rotation axis.

For a wave vector aligned with the rotation axis, the frequency is ω = ±2Ω; the
pressure field plays no role and the group velocity vanishes, showing that such inertial
waves, do not propagate energy. Figure 8 seems to establish their existence. Recently,
Carnevale et al. (1997) observed similar inertial waves for circular vortices subjected
to rapid rotation.

10. Conclusion
A detailed investigation of the effects of the Coriolis force on the three-dimensional

linear instabilities of Stuart vortices has been performed. This exact inviscid solution
describes an array of co-rotating vortices embedded in a shear flow. When the axis of
rotation is perpendicular to the plane of the basic flow, the stability analysis consists
of an eigenvalue problem for non-parallel versions of the coupled Orr–Sommerfeld
and Squire equations, which has been solved numerically by a spectral method.

The results may be summarized as follows:
Stabilization and destabilization: as observed in various experiments and as shown

analytically for simple basic flows (circular vortices, parallel shear flows, unbounded
quadratic flows), the Coriolis force plays a stabilizing or a destabilizing role, compared
to the non-rotating case. Strong anticyclones are unstable.

Short-wave breakdown: in the unstable range, three-dimensional inviscid instabil-
ities are promoted, and at large spanwise wavenumber, their temporal growth rate
asymptotes to a constant value, given by the pressureless analysis. This short-wave (in
the spanwise direction) behaviour is consistent with analytical results for centrifugal
and rotation-induced instabilities.

Hyperbolic and elliptical instabilities: they are generated by the stagnation points
of Stuart’s streamfunction and compete under the effect of the Coriolis force. In
particular, for the non-rotating case, both fundamental and subharmonic Floquet
modes exhibit a growth rate given by the stability of the unbounded quadratic flow
with hyperbolic streamlines. On the other hand, for weak anticyclonic rotation, the
short-wave eigenmodes behave like the instability of the unbounded elliptical vortex
subjected to rotation.

The Lifschitz & Hameiri theory: the geometrical optics stability method gives a
theoretical background to the results described above, since it considers the local
topological properties of the basic flow. When applied to stagnation points, the
stability properties of quadratic flows are recovered. This provides finally a link
between various fields of investigation in fluid mechanics, i.e. hydrodynamic stability
theory (via spectral methods) and turbulence modelling (via RDT).

General discriminant: the second invariant of the inertial tensor (the sum of the
basic velocity gradient and of the Coriolis tensor) gives a good prediction of the
bandwidth of unstable short-wave perturbations (with or without the Coriolis force).
Recall that it gives the exact bounds on stagnation points and for simple basic flows
(circular vortices, parallel shear flows, unbounded quadratic flows).

Inertial waves: under a rapid cyclonic or anticyclonic rotation (weak Rossby num-
ber), three-dimensional instabilities become neutral, and owing to their frequency, they
can be interpreted as inertial waves. A similar behaviour has been found for monopo-
lar vortices subjected to strong rotation. Two-dimensional instabilities (pairing modes)
are of course unaffected by the Coriolis force.

All these features could be generic to the linear stability of two-dimensional
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inviscid vortices in a rotating fluid. The Coriolis force appears to be a catalyst of
short-wavelength and/or pressureless modes, which are tuned (resp. detuned) for a
destabilizing (resp. stabilizing) rotation.
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